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• The objective of this part of the course is to show how some of the fundamental tools from 
Machine/statistical learning can be used to substantially improve the performance of light 
transport simulation.
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LIGHT TRANSPORT

(1)

• The basic idea of Monte Carlo light transport simulation is to sample light transport paths that 
connect light sources to the camera sensors (pixels). Averaging the contributions of these 
paths then yields a progressively converging image.

• The various light transport simulation algorithms (path tracing, bidirectional path tracing, 
vertex connection and merging, etc.) differ mainly by the way in which the paths are 
generated (i.e. stochastically sampled).

• For instance, (unidirectional) path tracing starts from the camera and works by adding one 
vertex at a time until it reaches a light source. Light tracing, on the other hand, works in the 
opposite direction, while bidirectional path tracing generates sub-paths from both ends and 
connects them in the middle.
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TODAYS’ RENDERING IS OLD NEWS

• From Matt Pharr’s editorial to ACM TOG special issue on production rendering [Pharr 2018]: 

(2)

“Today … renderers are … based on … path tracing. 
Introduced … by Jim Kajiya (1986).”

“Many advancements were made … including
- more effective light sampling algorithms (Shirley et al. 1996),
- high-quality sampling patterns (Kollig and Keller 2002), and
- multiple importance sampling (Veach and Guibas 1995),”

“… the core ray tracing [got] more efficient (Wald et al. 2001).” [Kajiya 1986]

• So which of the many proposed light transport algorithms are actually used in practice? 
• It turns out that most renderers are simple unidirectional path tracers. Indeed, the underlying 

light transport technology is 30 years old – with some other ingredients from around 2000.
• This can be nicely illustrated by looking at the references in the above quote from Matt Pharr’s 

editorial to the ACM TOG special issue on production rendering.
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ADVANCED LIGHT TRANSPORT

• Why are advanced light transport algorithms 
not used in practice?

(3)

Metropolis Light Transport [Veach and Guibas 1997]

• Why is it that none of the more advanced light transport methods, such as Metropolis Light 
Transport, bidirectional path tracing, or VCM, are used in practice? At least not very often?
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A GOOD LIGHT TRANSPORT ALGORITHM ...

• … has to be

– Fast in common scenes

– Robust & reliable

– Easy-to-use (no parameters)

– Interactive & progressive

– …

(4)

• To answer that question, let’s assemble a basic checklist of properties that a good light 
transport algorithm should have, and match it to some of the existing algorithms.

• So here’s the list. Of course, this is far from being exhaustive, but it’s a good start:
• Speed – no overhead over the currently accepted solution (path tracing).
• Robustness – the algorithm must handle scenes with complex lighting and geometry 

reasonably fast and with no artifacts.
• Ease-of-use – no technical user parameters are allowed. At most, there can be one 

speed-quality tradeoff slider.
• Interactivity – time to first pixel on the screen should be minimized (at most a fraction 

of a second).
• Progressivity – image quality steadily improves as the calculation progresses. One can 

inspect the image and resume rendering if needed at any point in time.
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THE GOOD ALGORITHM CHECKLIST

(5)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive

• So that’s our checklist, let’s see how the existing algorithms fare.
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PATH TRACING

• [Kajiya 1986, Veach and Guibas 1995, Shirley 1996,…]

(6)

Reference rendering 
(VCM)

Path tracing
(no clamping)

Path tracing 
(with  clamping)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive

• Simple unidirectional path tracing – the technology used in most today’s renderers – checks 
most of the boxes! 

• The only issue is: The algorithm does not handle complex light transport, notably caustics and 
strong, concentrated indirect illumination. 

• In other words, PT is not robust in the presence of complex light transport.
• Instead of a caustic, path tracing will generate just a bunch of fireflies (bright pixels).
• These can fortunately be removed by selective energy clamping (which is what everyone does 

in practice), so the image in the end looks ok (though it is far from being correct).
• And that’s, I believe, almost the whole story of why path tracing is so incredibly popular in 

practice (code simplicity and maintainability also plays an important role).
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THE LIGHT TRANSPORT CHALLENGE

(7)

Algorithm that can 

renders this at least as 

fast as a path tracer…

… and it can also render this.

• Ok, so path tracing is reasonably good, but it is not good enough.
• To motivate further development of light transport algorithms, let us define what constitutes 

the ‘ideal’ algorithm that we strive to achieve.
• The great challenge goes as follows: develop a light transport algorithm that renders a Cornell 

box at least as fast as a unidirectional path tracer (if not much faster).
• But at the same time, the same algorithm should be able to render complex scenes like the 

ones above in a reasonable amount of time, with no artifacts, without setting a single user 
parameter, interactively, and progressively.

• We are definitely not there yet as of today.
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BIDIR / VCM

(8)

Vertex Connection and Merging (30 min)Path Tracing (30 min)

• One attempt at improving the robustness of path tracing is our Vertex Connection and 
Merging (VCM) algorithm [Georgiev et al. 2012, Hachisuka et al. 2012].

• VCM achieves robustness by combining bidirectional path tracing (BPT) with photon mapping.
• By doing that, it can now robustly render complex indirect illumination such as in the scene 

shown above.
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BIDIR / VCM

• [Lafortune and Willems 1993, Veach and Guibas 1995]

• [Georgiev et al. 2012, Hachisuka et al. 2012]

• VCM = Photon mapping + Bidir

• “Brute-force robustness” – Overhead

(9)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive

• VCM achieves robustness by combining BPT with photon mapping, but it does that at the cost 
of introducing significant overhead in simple scenes.

• So it addresses one issue (robustness) at the cost of making another issue much worse 
(overhead).

• I call this approach “brute-force robustness” and I believe it is not the right way to go 
(“lightweight robustness” is what we should be striving for – i.e. robustness without 
unnecessary overhead). 

9



METROPOLIS LIGHT TRANSPORT

(10)

MLT + Manifold exploration [Jakob and Marschner 2012] Reference

• Another attempt at handling complex light transport is the Metropolis Light Transport (MLT) 
algorithm.

• For some time, MLT kept the aura of and the promise of being the ‘ultimate light transport 
solution’.

• In fact, still around 2011/2012, we had hard time publishing our light transport research work 
because some reviewers believed that MLT had already solved the problem.

• Fortunately, Wenzel Jakob has released his MLT implementation in Mitsuba, which made it 
possible to see for oneself just how disappointing the performance of MLT really is in practice.

• MLT’s main problem is uneven convergence, lots of nasty image artifacts, temporal instability
– illustrated in the above video.
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METROPOLIS LIGHT TRANSPORT

• [Veach and Guibas 1997, …]

• Uneven convergence, temporal instability

(11)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive
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DESIGNING THE ULTIMATE PRACTICAL 
ALGORITHM

12



THE ULTIMATE LIGHT TRANSPORT ALGORITHM

• Start off from PT

– because it ticks most of the boxes

• Address its problems

• Root of the problem: lack of information in sampling decisions

(13)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive

• Ok, so we’ve seen that the previous attempts at making path tracing robust were not 
completely successful.

• Let us make our own attempt.

• Looking at the checklist of the desirable properties, the one algorithm that is the closest to 
having all of them checked is the simple unidirectional path tracing. 

• So let’s use path tracing as the basis for designing the `ultimate solution’. Let us identify the 
root of the path tracing’s problems and design a solution that addresses specifically these 
problems, without introducing other issues.

• And with only a little bit of simplification, we can say that the root of the problem in path 
tracing is the lack of relevant information for the sampling decisions used to construct light 
transport paths. Let us elaborate…
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Path sampling in unidirectional path tracing

14

• As mentioned earlier, Monte Carlo light transport algorithms rely on random sampling of 
transport paths connecting the light sources to the camera sensors.

• Path tracing does this by starting from the camera, adding one vertex at a time, hoping this 
process it will eventually allow to reach the light source.
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Directional sampling

?

15

BSDF

Path Guiding

• Path construction in path tracing consists of several types of randomized (stochastic) sampling 
decisions.

• The first fundamental sampling decision is the direction sampling: given the last vertex of a 
partially constructed path, we add a new path by randomly sampling a direction and shooting 
a ray.

• In a vanilla path tracer, the sampling distribution would be proportional to the bidirectional 
scattering distribution function (BSDF), which describes the reflection profile of a material. The 
use of such a sampling distribution means to shoot rays preferably to directions corresponding 
to a large throughput of the local BSDF. 

• Whether or not such directions actually lead toward the light sources, the path tracer does not 
know – it can only hope it is the case. (3D artists are aware of this limitation, so they make 
sure to construct their scenes in such a way that it will indeed often be the case. But not 
always.)

• Consider the path vertex highlighted on the slide. 
• Since the BSDF at that point is diffuse, we have a fairly small chance to sample a reasonable 

direction (that will lead toward a light source), because the subset of “good” directions lies 
within a small solid angle depicted in green.

• But the path tracer has no way of knowing that light will be coming from that cone – it is 
lacking the relevant information.
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Path termination (Russian roulette)

?

16

• Another important sampling decision in the path tracer is randomized path termination using 
Russian roulette.
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Path termination (Russian roulette)

17

Russian roulette

• The intuitive idea is that if the partially generated path happens to reach a dimly illuminated 
region of the scene, the path is unlikely to contribute significantly to the resulting image and 
we should not waste time on its tracing.

• Once again, the path tracer cannot make that intuitive decision because it does not know 
upfront how much light will reach which scene region (that’s what the poor old path tracer is 
trying to compute in the first place).

17



Splitting

18

• Similarly, if the path construction reaches a well-illuminated region of the scene, it is more 
likely that the path will be able to reach the light source and it pays off to split it into several 
independent trajectories.

• And once again, the path tracer needs some information about illumination – that it normally 
does not have – to make that decision.
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SOLUTION IDEA

• Give path tracing extra information

• Chicken-and-egg problem

• Adaptive sampling

• How to make it robust when there’s so much uncertainty? – Machine learning methods

(19)

• Ok, so hopefully by now, the reader is convinced that the root of the problem in path tracing is 
sub-optimality of sampling decisions due to the lack of information about the illumination of 
the scene.

• The solution of the problem seems trivial: let’s just give the path tracer the missing 
information.

• But computing the distribution of light in the scene is what the path tracer is trying to do in 
the first place. And if we knew it, there would be nothing left for the path tracer to do.

• How can we break this chicken-and-egg problem?
• One answer is adaptive sampling – we can gather the relevant information from the samples 

used in the rendering itself.
• The fundamental problem in this context is: How can we extract reliable information from the 

Monte Carlo samples, given that they are contaminated by so much variance, i.e. uncertainty.
• Fortunately, Machine learning has been dealing with extraction and generalization of 

information from uncertain and noisy data for several decades (cf. [Bishop 2006]).
• And we can take advantage of these tools in light transport as well.
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OVERVIEW

• Path guiding through online mixture model training [Vorba et al. 2014]

– Guided Russian roulette and splitting [Vorba and Křivánek 2016]

– Path guiding in volumes [TOG, conditionally accepted]

• Robust adaptive direct illumination through online Bayesian regression
[Vévoda et al. 2018] 

(20)

• In the rest of the talk, I present several of our works that aim at improving path sampling 
through Machine learning (ML) methods.

• First, we have introduced the use of online training of mixture models and applied it to path 
guiding (i.e. directional sampling) on surfaces [Vorba et al. 2014], for Russian roulette and 
path splitting [Vorba and Křivánek 2016], and recently also for path guiding in volumes 
(participating media) [Herholz et al. 201?].

• Another tool from the ML repertoire is Bayesian regression, which we have recently applied 
to the problem of robust adaptive direct illumination sampling [Vévoda et al. 2018].
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PATH GUIDING
Vorba et al. – ACM SIGGRAPH 2014

• Let us start by our work on path guiding through parametric mixture model learning.
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

• We build on the idea of path guiding, first proposed by Henrik Wann Jensen in his 1995 paper.
• In his work, he uses light particles – that is photons – to reconstruct the distribution of 

incoming radiance (Li) at a point in the scene.
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

• He traces the photons in a preprocessing phase…
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

• … and stores them on surfaces for later use for path guiding in path-tracing.
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

path
tracing
path

tracing

• During the path-tracing, …
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

path
tracing
path

tracing

• …, he reconstructs the directional distributions of radiance from nearest photons…
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Previous work
• Jensen [1995]

photon
tracing
photon
tracing

path
tracing
path

tracing

• … and uses the distributions for sampling of reflected directions.
• Note that contrary to using the photons directly to estimate the scene radiance, using them 

for path guiding produces an unbiased image.
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Previous work
• Jensen [1995]
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Previous work
• Jensen [1995]
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Previous work
• Jensen [1995]: reconstruction

• The reconstruction of a directional sampling distribution at a given point starts with a search 
for nearest photons.
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k-NNk-NN

Previous work
• Jensen [1995]: reconstruction

• Since he is only interested in reconstructing a directional distribution, he makes the 
assumption that all the photons hit the surface at the point of interest.
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Previous work
• Jensen [1995]: reconstruction

• To reconstruct the directional probability distribution …
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Previous work
• Jensen [1995]: reconstruction

• … they discretize the hemisphere into equal-sized bins and count the number of particle 
directions falling into each bin.
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Previous work
• Jensen [1995]: reconstruction

• The result is a histogram over the hemisphere.
• However, histogram is known to be a poor density estimation method prone to over and 

under fitting.
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Limitations of previous work
• Bad approximation of             in complex scenes

• Although Jensen’s method can use the incident radiance term for path guiding, the method is 
still not robust and indeed, it struggles in a wide range of scenes.
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Limitations of previous work
• Bad approximation of             in complex scenes

• Let’s consider an interior scene where the camera is in a dim room and light enters form the 
outside.
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Limitations of previous work

• As the particles (photons) are scattered through BRDF sampling in the photon tracing phase at 
the beginning, it is often not possible to obtain a sufficient number of particles everywhere for 
a good-enough reconstruction of incident radiance.
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Limitations of previous work

• For example, in this illustration, we have only one photon in front of the camera. 
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Limitations of previous work
PTPT

• Using such a poor reconstruction in path-guiding would even increase the noise level in the 
rendered image.

• What we need is to get many more particles into the dim room, …
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Limitations of previous work
Not enough memory!Not enough memory!

• ... but the problem is that we are limited by memory where all the particles need to be stored
(including the particles outside of the room, where we do not need them at all).
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Our solution

• The Gaussian mixture model (GMM)

GMMGMM

• We follow the basic ideas of using photons as the source of information for better sampling 
(i.e. path guiding). 

• But instead of the histogram, we propose the use of a Gaussian mixture model to represent 
the directional distributions. 
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Our solution

• The Gaussian mixture model (GMM)

GMMGMM
on-line

learning
on-line

learning

• Furthermore, we propose an approach for progressive (online) training of the model from a 
potentially infinite stream of particles.

• The important thing is that the particles do not need to be stored in memory at once (which 
they would have to in Jensen’s method).
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Our solution

• The Gaussian mixture model (GMM)

GMMGMM
on-line

learning
on-line

learning
constant
memory
constant
memory

• So in this way our on-line learning allows to overcome the memory constraint.
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Overcoming the memory constraint

• This is how it works.
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Overcoming the memory constraint
1st pass

• We trace particles in batches that can fit into memory. 
• So we trace a first batch of photons, …
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Overcoming the memory constraint
1st pass

GMMGMM

• … we create a distribution on a scene surface…
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Overcoming the memory constraint
1st pass

k-NNk-NN

• … and we use the nearest photons for its initial training.
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Overcoming the memory constraint
1st pass

GMMGMM

48



Overcoming the memory constraint
1st pass

GMMGMM

• Now the particles can be removed …
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Overcoming the memory constraint
1st pass

GMMGMM

• … because the information has been absorbed in the distribution. 
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Overcoming the memory constraint
1st pass 2nd pass

GMMGMM

• Then we trace another batch of particles,
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Overcoming the memory constraint
1st pass

GMMGMM

2nd pass

• … and we use the nearest ones to progressively update the distribution.

52



Overcoming the memory constraint
1st pass 2nd pass 3rd pass …

GMMGMM

• We can repeat this process until the distribution is fully trained.
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Overcoming the memory constraint
1st pass 2nd pass 3rd pass …

GMMGMM
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GM: superior estimate
Jensen 
(histogram)
Jensen 
(histogram)

Gaussian mixtures
(parametric model)
Gaussian mixtures
(parametric model)

• Is it a good idea to use the (admittedly more complex) Gaussian mixture model to represent 
the incident radiance, as opposed to Jensen’s histograms?

• The above comparison shows that this is indeed the case – even without taking advantage of 
the online learning aspect.

• In this experiment, we trained Jensen’s histograms and our GMMs using the same number of 
photons.

• The amount of noise after 1h of rendering suggests that the Gaussian mixture model is clearly 
superior to the histograms.
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On-line stepwise 
Expectation-Maximization 

[Cappé & Moulines 2009] 

Input:   an infinite stream of particlesInput:   an infinite stream of particles

…

• We saw that the GMMs are a good model guiding distributions, but they can only be useful if 
we can keep training them form the stream of photons as they come during rendering.

• We want to read particles once from a potentially infinite stream and never return to 
previously used particles. 

• And here, the machine learning literature is of a great help, since online learning methods are 
available that can achieve exactly that.

• In our case, we rely on the online formulation of the famous EM algorithm.
• Note that online training would not be possible with the usual (batch) EM algorithm previously 

used in graphics – because the batch EM needs to repeatedly iterate over all the available 
particles.
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Method outline

renderingrenderingtrainingtraining

• Let us now summarize the entire rendering method.
• Before rendering, we train our Gaussian mixtures in a training phase.
• The result of this phase is a spatial cache of path guiding distributions. The distributions are 

trained from photons and thus contain directional distributions of radiance.
• These distributions are used to guide path-sampling during the later rendering phase.
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Guided path sampling

• Let us now explain the guided path-sampling on an illustration.
• Here, we trace a path from the camera and we use the nearest radiance distributions for its

guiding towards the light sources.
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Guided path sampling
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Guided path sampling
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Guided path sampling
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Guided path sampling

62



Guided path sampling
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GUIDED PATH TERMINATION (RUSSIAN ROULETTE)

64

Russian roulette

• The information stored in the trained Gaussian mixtures can be additionally used to inform the 
path tracer about the expected amount of illumination in different regions of the scene.

• And thanks to this information, the path tracer can now make a much more intelligent 
decisions about path termination: whenever there is not much light is some scene region, a 
path reaching that region is unlikely to contribute significantly to the resulting image and we 
should not waste time on its tracing -> terminate.
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GUIDED SPLITTING

65

• And vice versa, if the path construction reaches a well-illuminated region of the scene, it is 
more likely that the path will be able to reach the light source and it pays off to split it into 
several independent trajectories.

• And once again, the gaussian mixtures provide a good source of information for making such 
an intelligent sampling decision.
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Path tracing     (1h)

66

Guided path tracing   (1h)

• Let’s have a look at some path guiding results.
• Both images above have been rendered using a path tracer in 1 hour. 
• The left image is a classic, uninformed path tracer.
• While the path tracer on the right uses path guiding with guided Russian roulette and splitting.

This is based on guiding distributions that the method automatically learns for each given 
scene.
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Path tracing     (1h)

67

Guided path tracing   (1h)
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Path tracing     (1h)
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Guided path tracing   (1h)

• This is a detail of a part of the image that is especially problematic for the plain path 
tracing. 

• The problem is that the well is illuminated indirectly and light must bounce many times 
before it reaches the camera.

• Plain path tracing is not able to sample these important paths with sufficient probability 
because it does not use any global information about light distribution in the scene.
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ReferenceReference

69

• In this scene, the living room is illuminated by sun and sky. 
• Light comes only through the glass window and a small gap between the curtains.
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Path tracingPath tracing

Plain Plain 

70

• These difficult conditions are a showstopper for plain path tracing.

70



Path tracingPath tracing

Plain Plain + guided RRS + guided RRS 

71

• The guided Russian roulette and splitting by itself doesn’t make any striking difference. 
• The main problem is that the light paths can reach the light source only through very 

narrow set of directions.
• Our guided RR&S can detect that we highly undersample these directions at the moment 

when path hits the window.
• But this is already too late for splitting because all rays would be refracted in the same 

direction and end in the Sun.
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Path tracingPath tracing

Plain Plain + our ADRRS + our ADRRS Path guidingPath guiding

72

• While the guided RR&S does not work very well, path guiding (i.e. guided directional 
sampling) achieves very good results.
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Path tracingPath tracing

Plain Plain + our ADRRS + our ADRRS + guided RRS + guided RRS Path guidingPath guiding

73

• However, we can see that with the synergic use of path guiding and guided RR&S 
together, we can achieve far better results than the plain uniformed path tracer.
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Complex Bidirectional Methods (VCM)

74

Vertex Connection and MergingPath Tracing

• Let’s now go back to our motivation. We saw that the VCM algorithm was able to achieve 
robustness in complex scenes, but at the cost of significant overhead.

• Let us now have a look how a guided version of simple unidirectional path tracing 
compares to a guided version of the advanced VCM algorithm.
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Guided path tracing can match complex methods

75

Path Tracing

• We applied our path guiding in unidirectional path tracing and in bidirectional VCM.
• Here we can see their respective convergence plots in a scene with difficult visibility.
• The green curves correspond to each algorithm without path guiding, while the red curves 

correspond to improved path sampling with our path guiding.
• Although our guiding improved both methods in this challenging scene, there is almost no 

advantage of the complex VCM over path tracing when we use our path guiding.
• This suggests that in unidirectional guided path tracing we do not need to introduce any extra 

interconnections with light paths because it would not make things any better.
• This is an important implication – it confirms that guided path tracing is at least as good as the 

much more complex bidirectional methods.
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• Providing path tracer with information makes it much more robust
• Machine learning is the key (online step-wise EM formulation)

• Step towards a simpler ultimate algorithm

• Path guiding applicable in production

Practical Implication

76

• To bring the point home: Providing the path tracer with reliable information that it can use to 
make ‘smarter’, or ‘guided’ sampling decisions makes the algorithm tremendously more 
robust.

• A key aspect here is the use of machine learning methods – parametric density estimation 
using mixture models and online Expectation-Maximization – to be able to extract reliable 
information from the noisy Monte Carlo samples.

• This is indeed a step towards a simpler ultimate algorithm that can simulate all kinds of light 
transport.

• The simplicity is important for production environments that btw. also requires simulation of 
various non-physical phenomena. 

• Such a non-physical simulation is usually not easy with bidirectional methods.
• So our method that we develop throughout the thesis is immediately applicable to production 

renderers.

76



GUIDED VOLUMETRIC TRANSPORT

• Recently, we have applied the path guiding idea also to volumetric light transport.
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Volume path guiding

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)

• All events importance sampled
• Product sampling for collision distance

• In order to apply path guiding to volumetric transport, all the various random decisions 
used when constructing a light transport path need to be appropriately importance 
sampled (`guided’).

• This includes the selection of scattering distance along a ray, and the decision whether the 
scattering should occur in the volume or at the next surface interaction. These decisions 
are unique to volumetric light transport and do not appear in surface transport.

• Furthermore the decisions shared with surface transport include the choice of the 
scattering direction and random termination/splitting of the paths.
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Reference 

• Without giving any further details, let’s have a look at some results.
• This is a homogeneous medium with scattering properties approximating these of a 

Caucasian skin.
• We use Monte Carlo path tracing to render the scene.
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Standard sampling

30 min

• With standard path sampling, we can see that even after 30 minutes of rendering, the 
image shows a significant amount of noise.
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New volume path guiding

30 min

• Our volumetric path guiding based in the radiance distribution learned from Monte Carlo 
samples yields a nearly clean image in the same rendering time.
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Dist. + dir. guidingStandard sampling RR + splitting

SPP:  1580
relMSE: 6.458

SPP:  1288 
relMSE:  1.354

SPP:  1660
relMSE:  0.401

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)

• This slide shows that the different random sampling decisions complement each other and 
together they yield the desired variance reduction.
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Reference

• Here, we show the same technique applied to a very different scene – this time a natural 
history museum filled with thin haze and illuminated by light shafts.
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Standard sampling

45 min

• Again, the standard sampling shows a significant amount of noise…
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New volumetric path guiding

45 min

• While the path guiding based on the extra information provides a significant variance 
reduction.
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Dist. + dir. guidingStandard sampling RR + splitting

SPP:  796
relMSE: 1.725

SPP:  392 
relMSE: 0.747

SPP:  1068
relMSE: 0.123

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)

• Once again, we can see that the different random decisions add up to yield the final 
solution.
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Bayesian online regression for adaptive 
direct illumination sampling

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek

Render Legion, a.s.
Charles University, Prague

• We now move to our recent work, where we apply a different tool from the Machine 
learning toolbox (this time Bayesian regression) to the problem of adaptive direct 
illumination sampling.
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Direct + indirect illumination

- MC rendering algorithms – including path tracing – suffer from noise.
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89

Direct + indirect illumination

- Traditionally, the indirect illumination component has been considered as the main source 
of noise, and it’s been subject to lot of research, … but in this scene it is actually the direct 
component which causes the trouble.
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90

Direct illumination only

Non-adaptive sampling
[Wang et al. 2009]

- In this image with direct illumination only we can see it clearly. The non-adaptive method 
shown on the left struggles to work efficiently, because it wastes lot of samples on strong 
but completely occluded sun. 
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91Adaptive sampling
[Donikian et al. 2006]

Direct illumination only
Direct illumination only

Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

- Possible solution are adaptive methods which try to improve sampling based on past 
samples. But while they can decrease the amount of noise significantly, …
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92Adaptive sampling
[Donikian et al. 2006]

Direct illumination only
Direct illumination only

Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

- they can also introduce artifacts or spiky noise because they are based on adhoc solutions 
and they tend to overfit.

- This lack of robustness is a consequence of adhoc solutions to crucial questions in adaptive 
sampling: when is it safe to use the samples and how they should be combined with any 
previous knowledge?
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93Ours Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

Direct illumination only

(Bayesian learning)

- Therefore we propose a first solid theoretical framework for robust adaptive sampling in 
rendering.

- We draw on the Machine learning work and coin the problem as Bayeasian regression.
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94Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

Direct illumination only

510x faster

Ours
(Bayesian learning)

- In this scene, our solution is more than 500 times faster than the non-adaptive solution…
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95Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

Direct illumination only

510x faster

Robust

Ours
(Bayesian learning)

- … and we can achieve much better robustness.

- The new framework is not limited to the direct illumination. We are certain that other 
applications of adaptive sampling will benefit from it as well.
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Previous work
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

In the context of Monte carlo simulation there is a lot of work related to ours.
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Adaptive sampling
• General Monte Carlo

– Vegas algorithm 
• [Lepage 1980]

– Population MC
• [Cappé et al. 2004, ...]

• Rendering
– Image sampling

• [Mitchell 1987, ...]
– Indirect illumination  (path guiding)

• [Dutre and Willems 1995, Jensen 1995,  Lafortune et al. 1995, ...]
• [Vorba et al. 2014, Muller et al. 2017]

– Direct illumination
• [Shirley et al. 1996, Donikian et al. 2006, Wang et al. 2009]

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• Adaptivity in Monte Carlo simulation is not a new concept. 

• There is lot of work in the context of general Monte Carlo as well as in rendering, for 
example works dealing with  image sampling, Indirect illumination and also in direct 
illumination.

• One of the oldest adaptive algorithms for Monte carlo estimation is Vegas by Lepage 
which works by histogramming integrand and using these histograms for sampling in next 
steps.

• Another example are population Monte carlo algorithms, which use population of 
particles and track how well they sample the integrand and based on that they keep the 
best individuals. 

• In the context of rendering we can find a lot of work in image space sampling, we just 
mention the old work by Mitchell which deals with allocation of more samples into image 
parts with high-frequency content. 

• In Indirect illumination computation first works were by Dutre and willems, where authors 
adaptively shot particles from lights (TODO: ziskat paper, nebo se zeptat Jardy), Jensen 
who used photon maps to construct sampling densities and Lafortune et al. who applied 
Vegas algorithm onto Monte carlo simulation of light transport.

• Along the years there were several other works dealing with this topic, but most recently 
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there was work by Vorba et al. which uses gaussian mixtures for guiding and Muller et al. 
which is a revamped version of algorithm by lafortune from 1995.

• Regarding direct illumination we mention a pioneering work by Shirley et al. who 
adaptively classified lights into important and unimportant ones and more recent work by 
Donikian et. al. which is closely related. Wang et al. sampled lights adaptively based on 
surface reflectance and estimates of lights' contributions.

• None of these works deal with a problem of determining when and how to incorporate 
new information into the current sampling model.
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Bayesian methods in rendering
• Filtering

– NonLocal Bayes [Boughida and Boubekeur 2017]

• Global illumination
– Bayesian Monte Carlo [Brouilat et al. 2009, Marques et al. 2013]
– Path guiding [Vorba et al. 2014]

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
98

• Bayesian methodology on the other hand is not used very much in rendering.

• There are just few methods in filtering and Global illumination.
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Background

99

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Now let me give you some background related to direct illumination problem
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Direct illumination

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Less important

Occluded

• What exactly is the direct illumination?

• We have a scene with several lights and some geometry

• And we estimate the direct contribution of each ligth onto each point in the scene.  That is 
still a complex task ...

• due to uneven luminaire importances

• and due to occlusion
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Clustering (Lightcuts)

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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[Paquette et al. 1998, 
Walter et al. 2006]

Cluster contribution bounds

• One way to improve direct light estimation is to improve scalability when there is a lot of 
lights in the scene

• We can do so by hierachically clustering the lights

• and for each point in the scene we can choose clustering with the lowest approximation 
error.

• Each cluster gives us a conservative bound on its contribution to the point. 
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Cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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[Wang and Akerlung 2009]

P

• Then we could use cluster contribution bounds to

• build a sampling distribution over clusters

• and then use it for getting MC estimates.

• At this point, we still wouldn't have adaptivity, and we wouldn't be able to capture 
complex visibility.
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Adaptive light sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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[Donikian et al. 2006]

screen space

P P

Ad-hoc combination

+

• We could achieve adaptivity as Donikian et al. [2006] did.

• They gather statistics about clusters in screen space and

• They do so for each pixel and from the statistics they build sampling over clusters. But 
these estimates are very noisy.

• Therefore they do the same also over the whole block of pixels and then

• they mix both information distributions, but in an ad-hoc way which may sometimes result 
into overfitting and artifacts in a picture.
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Problem summary

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

104

MC estimate

Cluster contribution bounds

• So our goal is to compute direct illumination by means of Monte Carlo, and for that we 
need to find optimal sampling distribution over clusters. We want to have adaptive 
solution because adaptivity has huge potential, but we strive for a robust solution. 

• In order to achieve these goals, we have two kinds of information about clusters at hand:

• We have cluster contribution bounds towards a point, which are conservative, 
noise-free.  We have them right from the beginning so they can serve as our prior 
information.

• And we have Monte-carlo estimates, which are noisy, and we get them over time.

• For a question how to combine these two sources of information together in a robust way 
we've found a good answer (as we explain shortly)
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Our approach
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Let us now introduce our approach ...
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Contributions

• Optimal sampling of clusters
• Adaptive sampling by Bayesian inference

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• Our main cotributions are two:

• We found the optimal sampling scheme of clusters

• And we do adaptivity with a help of Bayesian inference giving us a more robust solution 
and allowing us to combine Monte carlo samples with cluster contribution bounds in a 
principled way.

• Lets start with optimal sampling of clusters
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Optimal cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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𝑃 𝐶 ∝      mean
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𝑃 𝐶 ∝  meanଶ + variance

• Given a scene, let’s have a look at how to derive sampling probabilities from MC samples

• We are sampling the clusters and getting our MC samples 

• with some mean and variance.

• And normally, and what various approaches did in the past, the cluster's sampling 
probability would be proportional to the mean only. 

• But we found out that variance of samples from each cluster has a big impact. The higher 
variance means that more samples should be allocated to it. 

• Therefore optimal sampling should be proportional to the square root of the second 
moment of the samples.

• The sampling probability then can change drastically as is depicted by the green bars.
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Direct illumination only

• Let me show you the practical example: this scene contains more than 5000 light sources 
so the clusters can be large and complicated….
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Mean only (Previous)

109

Direct illumination only

Mean + Variance (Ours)

• On the left we see an inset showing how sampling according to a mean performs. It 
undersamples some tricky cluster which leads to spiky noise.

• And on the right we see that sampling according to both the mean and the variance 
eliminates this issue.
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Contributions

• Optimal sampling of clusters
• Adaptive sampling by Bayesian inference

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

110

• Having explained the optimal sampling, 

• we will show you now how to do the adaptivity the Bayesian way ...

• The issue is that the mean and the variance needed for the optimal sampling are not know 
upfront and need to be learned during rendering.
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Naive adaptive cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• First, lets have a look how naive adaptivity looks like. We have some samples from clusters 
and some cluster sampling probabilities

• And suppose we have gathered a new data point which happens to be an outlier 

• If we estimate the sample means directly, our estimates can change abruptly and that will 
have a strong effect on further cluster sampling. 

• (It might then take a long time to fix that decision. More probably it will cause an artifact 
in the final picture.)
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Bayes cluster adaptive sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Model x Prior

• If we estimate means in a Bayesian way, we model the distributions of MC estimates seen 
so far while we also have some prior information about parameters of that distribution,

• Therefore, when we get a new sample,

• Our distribution changes less abruptly as well as cluster sampling probabilities  derived 
from it, which yields a more robust solution.
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Cluster-region pairs

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• Before we explain how we model the data we need to explain some basic context 
regarding clusters and scene subdivision.

• Contrary to the previous approaches, we split the scene into fixed Regions

• for each region we compute exactly one light clustering and keep it cached for that region. 
That speeds up clustering retrieval.
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Cluster-Region data

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• Now we focus on samples collected from one cluster in one region in the scene.

• And we keep track of the distance d in the geometry factor in each estimate.

• We can then plot the data (i.e. MC estimates) for a cluster in a region which reveals 
relation of estimate values to distance. You may notice the inverse squared falloff with the 
distance and a number of zero-valued samples.
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Regresion Data model

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Parameters:
- normal distr. parameters

଴ - probability of occlusion

Cluster-Region data
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• Our model is therefore a parametric regression model, which for a distance yields a 
distribution of MC estimates. We design it as follows:

• Non-zero samples are modeled by a normal distribution with mean and variance being a 
function of a distance associated with samples. (This part has two parameters k and h.)

• The zero valued samples are incorporated by mixing the inverse-square distance falloff 
model with a delta function (and it is controled by p0, which has a meaning of occlusion 
probability.)

• Now having designed our data model, we need to define prior for the model parameters
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Conjugate prior

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Same functional form

• The model we have just defined has parameters k, h and p0 and for them we use so called 
conjugate priors

• conjugate prior is such that when combined with likelihood it has the same functional form as 
the posterior.
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Our (conjugate) Priors

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Hyperparameters

Cluster contrib. estimate

• We proved that conjugate prior in our case is Beta distribution for p0 and 

• normal-inverse-gamma distribution for the parameters k and h.

• There are various hyperparameters in the equation, but one parameter which stands out is m0,  
for which we use the conservative cluster contribution bound
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Algorithm summary

• Light preprocess (clustering)
• During each Next event estimation:

– Obtain clustering (Cut) cached in a region
– Compute distributions of estimates for each cluster in Cut 

-> mean, variance
– Build distribution over clusters
– Sample direct illumination
– Record new data for sampled cluster

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• To wrap it up, our algorithm is following:
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Results
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

- Let us now demonstrate our solution in practice.
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Direct illumination only

- Let us start with performance testing in a scene with simple occlusion in direct illumination 
only setting.

- It is the living room scene from the beginning of our presentation.
- It is lit mostly by a few small area lights on the ceiling, only in the left part sunlight is coming 

through the windows.
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121Wang Ours Donikian

510x faster Robust

Direct illumination only

RM
SE

time [min]

Wang

- As you could already see, non-adaptive sampling of Wang at al. does not perform well in this 
scene.

- The sun is much stronger than the ceiling lights and is therefore sampled much more often 
even if it is actually occluded and so most of the samples are wasted.

- <click>
- Donikan’s algorithm improves the result significantly, as it quickly learns the sun occlusion.
- On the other hand, it struggles with the ceiling lights. They are covered by shades which block 

some of the samples. The method gives such samples too big weights, undersamples these 
lights and introduces spiky noise.

- <click>
- Our method also quickly learns the sun occlusion…
- <click>
- … and converges more than 500× faster than Wang.
- <click>
- We can even observe higher empirical convergence rate.
- At the same time, thanks to the Bayesian treatment, our method is robust, does not get 

confused by the occluded samples and avoids the spiky noise.
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Direct + indirect illumination
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- So, that was the direct illumination.
- However, in practice one is usually more interested in images containing both direct and 

indirect components.
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Direct + indirect illumination

Wang

Ours

6.7x faster 6.7x faster

Wang

Ours

123

- We can see that the strong direct illumination noise of Wang dominates also in the complete 
image. 

- The direct component is definitely the main source of noise in this scene.
- <click>
- By using our method in the next event estimation in path tracing we are able to improve the 

light sampling on every path vertex…
- <click>
- …and get more than 6x times speedup.
- Note that the remaining noise in the bottom right image is caused solely by the indirect 

component and cannot be influenced by our method.
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Direct illumination only

124

- Now it is time to stress test the algorithm’s robustness robustness in a scene with complex 
occlusion.
- This scene presents a real challenge due to its highly structured illumination plus there are lights 
in the other room behind the door.
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Direct illumination only

Ours DonikianWang

9.3x faster

125

RM
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time [min]

Wang

- In this part…
- <click>
- … Wang’s method produces a lot of noise again as it wastes samples on the lights behind the 

door.
- <click>
- On the other hand, our method performs great.
- <click>
- It is more than 9 times faster,
- <click>
- And again we can observe higher empirical convergence rate. And all that without introducing 

any artifacts in such a complicated illumination setting.
- <click>
- Donikian’s method at first also seem to perform well but further inspection would discover 

small blocky artifacts in the shadows.
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Ours DonikianWang

Direct illumination only

Robust

126

- However, in this part …
- <click>
- Wang does not perform well again, but this time also the Donikian’s method fails.
- <click>
- The illumination coming through the leaves of the plant is too complex for the ad-hoc learning 

to handle, the method overfits and produces square artifacts. This is exactly the problem of 
previous adaptive methods. They can provide substantial speedup but they don’t fail 
gracefully.

- <click>
- Bayesian learning makes our method much more robust and artifact-free.
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Direct + indirect illumination

- Finally, let’s test the complex occlusion also with the indirect component.
- If we take a look at the same scene…
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Direct + indirect illumination

Ours Wang OursWang

4.3x faster 4.3x faster

- …we will see the direct illumination noise dominates the complete image the same way as in 
the previous scene.

- <click>
- Our method eliminates it 
- <click>
- and renders the complete image more than 4 times faster and without any artifacts.
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Direct + indirect illumination

OursWang

- There is one more interesting place in this scene.
- <click>
- It is this statue.
- It is made of glossy metal and even though our method does not take the surface BRDF into 

account, it performs significantly better even there.
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Direct illumination only

- Since we divide a scene into regions by a uniform grid of a fixed resolution, we need to test 
how this resolution affects the performance.

- For that we will use this large scene containing a lot of lights.
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131Wang Ours (64) No regression

Direct illumination only

3.6x faster

1 − 𝑝଴ × 𝑁 est.
𝑘

𝑑ଶ ,
ℎ

𝑑ସ

         𝑝଴    ×  𝛿 est.

- With our default choice of 64 regions per the shortest grid dimension
- <click>
- Our method performs more than 3 times faster than Wang.
- So what about other resolution?
- <click>
- The regression modeling of the distance falloff makes our method rather insensitive to the 

actual grid resolution.
- <click>
- And so even much smaller as well as much higher resolutions all perform roughly the same.
- <click>
- Without the regression we would have to use much higher resolution otherwise we would see 

sudden noise transitions between regions.
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Contribution

• Bayesian framework for robust adaptivity

• Optimal cluster sampling

• Algorithm for direct illumination
– Unbiased, adaptive, robust
– Easy to integrate into a path tracer

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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• The main contribution of our work is creating a Bayesian framework for adaptive Monte Carlo 
quadrature. 

• It enables exploiting the big potential of the adaptive approach while avoiding the biggest 
weakness of previous attempts – the lack of robustness.

• We applied this framework on the problem of direct illumination sampling.
• In the process we derived the optimal sampling of clusters and developed an unbiased 

adaptive direct illumination algorithm with online learning of light sampling distributions. It is 
easily integrable into a path tracer and suitable for interactive rendering.

• Our new framework is not limited to the direct illumination though and we are certain that 
other applications of adaptive sampling will benefit from it as well and it opens the path for 
many other tools of statistical machine learning (such as full Bayes or variational Bayes).
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CONCLUSION
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CONCLUSION

• Path guiding

– Makes complex bidirectional method unnecessary

– Potential for wide adoption practice 

• Machine learning methods = principled way to achieve robust, online adaptive sampling

– Path guiding – online learning of parametric mixture models

– Direct illumination sampling – Bayesian online regression

• Online learning methods compatible interactive rendering workflows & progressivity

• Bayesian methodology can provide the necessary robustness
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FUTURE WORK

• Bayesian model selection 

• Full Bayesian inference – Variational Bayes?

• Adaptive decision based on reinforcement learning

• Deep learning for light field reconstruction for path guiding

• Can this be that one missing piece to make MCMC methods useful in practice?
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• While you may think that rendering is 
science, remember that first and foremost, 
rendering is magic.
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